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Levels of protein structure
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* Mass spectrometry can inform on all levels of protein structure



What do we want to know?

« Structure

» Stoichiometry, connectivity, 3D topology,
conformations, atomic coordinates

* Thermodynamics

* Interface and interaction strengths,
stability

« Kinetics

- Rate constants, activation energies



Two strategies - native or labelling
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Labelling technologies with MS

 Label protein, and use MS to localise the
individual labels

* Can interrogate the ‘global’ and ‘local’ &
levels: i.e. protein or peptide level

* Peptide level accessed by enzymolysis
of protein, and further interrogation with
tandem MS

- Labels reveal solvent accessibility and
connectivity

* Provide means of probing protein
structure and dynamic fluctuations




Cross-linking mass spectrometry
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« Cross-linker forms covalent bonds between amino acids with appropriate
functionality

* Peptide masses (and fragments) are interrogated to localise cross-linker
* Intra- and inter-protein cross-links can be formed

» Cross-links can be used to determine connectivity, and as a spatial restraint
for modelling protein structures

* Problems centre on decreased detection efficiency of cross-linked peptides,
kinetic effects, and interpretation of observed links



Oxidative foot-printing
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Solvent accessible amino acid side chains of the protein are oxidised
Peptide masses (and fragments) are interrogated to localise oxidation sites

Comparing data from proteins in complex and in isolation allows the
determination of interface sites

Problems centre on data analysis and differential intrinsic reactivity



Hydrogen/deuterium exchange

* Monitor the rate at which T T ——— [JHydrogen
protein hydrogens are B Nitrogen ] Sidechain carbon [[] Backbone amide hydrogen
replaced by deuteriums (or
vice versa)

Three types of hydrogen in
proteins, only backbone amide
hydrogens exchange at
measurable rate

* Exchange can be (effectively)
quenched by dropping pH to
~2.5, and temperature to 0°C

« Exchange rates reveal solvent
aCCeSSibi”ty His — Pro

* Problems centre on localisation, and interpretation of solvent accessibility



Labelling technology - Example

Dlevelat100s

B<-B<-B]<0 |
<25% 50% 60% 70% >85%

- Hydrogen/deuterium exchange of oligomeric ‘molecular chaperone’ protein

Wintrode ... Smith, Biochemistry (2003) 42, 10667-73

» Side-chains at interfaces exchange relatively rapidly, suggesting a labile
oligomer



‘Soft’ lonisation

* From molecules in solution to ions In
vacuum

- Established ionisation techniques
resulted in covalent fragmentation of
molecules

+ Soft ionisation techniques allow
lonisation of large ions without their
fragmentation

* Current ‘mass record’ is >100 MDa!

Nobel Prize in Chemistry 2002

"for their development of soft desorption
ionisation methods for mass
spectrometric analyses of biological
macromolecules”

s PRE
John B. Fenn Koichi Tanaka
gy 1/4 of the prize & 1/4 of the prize
USA Japan



=S| mass spectrum of single protein
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 Electrospray mass spectra show multiple ‘charge states’ for a 10 kDa protein



Conformational effects on ESI spectra
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* Folded state of protein governs its surface area, and number of sites available
for protonation



Maintaining noncovalent interactions

 Transfer multi-subunit protein assembly from solution into gas phase
+ Requires control of ionisation conditions, and ion transmission



Nano-electrospray ionisation (NESI)
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Collisional focussing
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- Both axial and radial components of the ions’ velocity can be dampened by

collisions with background gas



=S| mass spectrum
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Mass accuracy
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- Additional mass due to adducted solvent molecules and buffer ions
- Number of adducts inversely related to activation



Memlbrane protein assemblies are also tractable

- Sample transferred into vacuum
within detergent micelle

 Activation within the mass
spectrometer removes
detergent to leave “naked”
protein assembly

100- 23+

24+ | 22+

0/0_

100.

% -

e e e FTVE
5400 5600 5800 6000

S — T

Barrera et al, Science (2008), 321, 243-6




Benefits of nESI

* Lower sample amounts (flow rate
approx 10nL/min, vs 5 yL/min in
ESI)

- Can use aqueous buffers and
ambient temperatures

* Narrower charge states due to
fewer adduction

* Less dissociation of oligomer

* Symmetrical charge state
distribution indicative of a single
conformation

* Fewer non-specific aggregates
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Non-specific associations during ESI
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* Probability of there being >1 analyte molecules in ‘final’ ESI droplet
* Most droplets are empty, occupancy increases with concentration

* Decreased initial droplet size in nESI reduces prevalence of non-specific
aggregates




Intact memlbrane protein machines - Example
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Housden et al, Science (2013), 340, 1570-4
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Determining binding affinities - Example

- Titration experiments allow the
determination of binding affinity

- Practicable in the 100 nm - 1 mM range
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m/z Housden et al, Science (2013), 340, 1570-4
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—ffects of activation in the gas phase

* Activating conditions lead to high
quality mass spectra

- Same activation can lead to
» collapse (i.e. smaller CCS)
» then unfolding (i.e. larger CCS)

Benesch, J Am Soc Mass Spectrom (2009), 20, 341-8



Collision induced dissociation of protein assemblies
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 Dissociation is asymmetric with respect to mass

* Unfolded, highly charged monomers are removed sequentially



Deconvoluting heterogeneity with CID
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» Peak separation is aided by the charge reduction afforded by CID
* Predictable nature of CID allows back calculation of oligomeric distribution



Quantifying stoichiometries

Measured mass (kDa)
200 400 600 800 1000 Baldwin et al, J Mol Biol (2011), 297-309
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* MS versus size-exclusion chromatography with multi-angle light
scattering

Normalised abudance
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* For proteins of similar composition, abundances match solution values



Free energies from MS measurements - Example

- aB-crystallin forms
p.olydlsperse gllgomgrs Inter-dimer
via inter- and intra-dimer (‘edge’)
interfaces

 Abundances of
stoichiometries are fitted

to an appropriate \z
biophysical model for

oligmerisation

- Effect of mutation/
environment on free
energies extracted

* Allosteric communication
between interfaces
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Hilton et al, Proc Roy Soc B (2013), 368, 20110405



Protein dynamics

* Proteins are not static structures, but rather
undergo fluctuations both at and before
equilibrium

* Such ‘protein dynamics’ are crucial to their
function in the cell

* These dynamics can span a wide range of
amplitudes and timescales

Local flexibility Collective motions
€ > -«
Bond Methyl Loop Larger domain
vibration rotation motion motions
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Dynamics
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Quaternary dynamics -

—Xample

- Two homologous
proteins from the
same cellular
compartment
iIncubated

+ Subunit exchange
results in the
appearance of
hetero-oligomers
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Quaternary dynamics - Example
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* Exchange proceeds via the movement of dimeric units
* Incorporation is via sequential incorporation of dimers into oligomers

- Hetero-assembly leads to a wide variety of possible oligomers



Preservation of structure

* It is clear stoichiometry is preserved in the mass spectrometer, but can we
probe native structure?



IM-MS spectrum
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Obtaining an experimental CCS
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 Every feature resolved in m/z has an associated drift time distribution
* Drift time is converted into CCS either directly or via calibration



CCS values from protein structures
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- Can approximate CCS as rotationally averaged projected area

« Determine ‘theoretical’ CCSs from solved protein structures



CCS comparison
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- Excellent correlation between theoretical and measured values for globular proteins
 Discrepancy is due to simplicity of ‘projection approximation’
» Correlation motivates use of IM measurements in assessing model structures



Using IM-MS to measure conformers - Example

* P-glycoprotein is an low specificity efflux A
pump which impairs drug delivery
- IM-MS allows the detection of different u 5

conformations - outward, inward open,
inward closed (left to right) |
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Marcoux et al, Proc Natl Acad Sci USA (2013), 110, 9704-9



Using IM-MS to filter structures - Example
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Using IM-MS to filter structures - Example

» Compare random rotations of 12mer
models to TEM class averages

* Lower score is better fit 18mer

* Projected area from TEM is

. 24mer
conceptually similar to CCS area

from IM 58
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MS across wide range of time and length scales
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Protein dynami
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In-house software to enable quantification

Aryival T?me -
CCS |

DynamiXL
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IMPACT.chem.ox.ac.uk EMnIM.chem.ox.ac.uk BioBOx



http://UniDec.chem.ox.ac.uk
http://IMPACT.chem.ox.ac.uk
http://EMnIM.chem.ox.ac.uk
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