Coding with R MetaboAnalyst

vpes.Operator):
X mirror to the selected
oct.mirror_mirror_x"

07 DECEMBER 2022 ("please select exaction

INGVILD COMFORT HVINDEN^R CLASSE

DPHIL, MCCULLAGH GROUP

What is R?

R is a programming language available for free on <u>https://www.r-project.org/</u>

R can be run via RStudio

Both R and RStudio can be used on Windows, macOS and Linux

It's used mainly for data mining, statistical analysis and data visualization

There are a range of 'packages' that provide additional tools for statistical analysis, visualization and more.

Bioinformatics, 34(24), 2018, 4313–4314 doi: 10.1093/bioinformatics/bty528 Advance Access Publication Date: 28 June 2018 Applications Note

OXFORD

Systems biology

MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data

Jasmine Chong and Jianguo Xia*

Institute of Parasitology, and Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada

*To whom correspondence should be addressed. Associate Editor: Oliver Stegle Received on November 20, 2017; revised on June 13, 2018; editorial decision on June 26, 2018; accepted on June 27, 2018

Abstract

Summary: The MetaboAnalyst web application has been widely used for metabolomics data analysis and interpretation. Despite its user-friendliness, the web interface has presented its inherent limitations (especially for advanced users) with regard to flexibility in creating customized workflow, support for reproducible analysis, and capacity in dealing with large data. To address these limitations, we have developed a companion R package (MetaboAnalystR) based on the R code base of the web server. The package has been thoroughly tested to ensure that the same R commands will produce identical results from both interfaces. MetaboAnalystR complements the MetaboAnalyst web server to facilitate transparent, flexible and reproducible analysis of metabolomics data. **Availability and implementation**: MetaboAnalystR is freely available from https://github.com/xia-

Availability and implementation: MetaboAnalystR is freely available from https://github.com/xialab/MetaboAnalystR.

Contact: jeff.xia@mcgill.ca

MetaboAnalyst is run with R code

WEBSITE TUTORIAL: <u>HTTPS://WWW.METABOANALYST.C</u> <u>A/DOCS/RTUTORIAL.XHTML</u>

Hide R Commands R Command History: Save 1. mSet <- InitDataObjects("pktable", " stat", FALSE) 2. mSet <- Read. TextData (mSet, "Replaci ng with your file path", "colu", " disc"); 3. mSet <- SanityCheckData(mSet) 4. mSet <- ContainMissing(mSet) 5. mSet <- ReplaceMin(mSet); 6. mSet <- SanityCheckData(mSet) 7. mSet<-ContainMissing(mSet) 8. mSet<-FilterVariable(mSet, "iqr", "F", 25) 9. mSet <- Prepare PrenormData (mSet) 10. mSet <- Normalization (mSet, "SumNor m", "NULL", "AutoNorm", ratio=FALS E, ratioNum=20) 11. mSet<-PlotNormSummary(mSet, "norm 0_", "png", 72, width=NA) 12. mSet <- PlotSampleNormSummary (mSet, "snorm_0_", "png", 72, width=NA) 13. mSet <- PCA. Anal (mSet)

A !

- 14. mSet<-PlotPCAPairSummary(mSet, "pc a_pair_0_", "png", 72, width=NA, 5)
- 15. mSet<-PlotPCAScree(mSet, "pca_scre
 e_0_", "png", 72, width=NA, 5)</pre>
- 16. mSet<-PlotPCA2DScore(mSet, "pca_sc ore2d_0_", "png", 72, width=NA, 1, 2,0.95,0,0)
- 17. mSet<-PlotPCALoading(mSet, "pca_lo ading_0_", "png", 72, width=NA, 1, 2);
- 18. mSet<-PlotPCABiplot(mSet, "pca_bip lot_0_", "png", 72, width=NA, 1,2)
- 19. mSet<-PlotPCA3DLoading(mSet, "pca_ loading3d_0_", "json", 1,2,3)

MetaboAnalyst is run with R code

WEBSITE TUTORIAL: <u>HTTPS://WWW.METABOANALYST.C</u> <u>A/DOCS/RTUTORIAL.XHTML</u>

Challenges in metabolomics data analysis

Metabolomics can generate many data sets

Data sets often contain several different experimental groups

Leads to cumbersome and timeconsuming data processing

Solution: R

Save time by automating repetitive tasks

- Figuring out normalisation, transformation and scaling parameters and identifying outliers
- Calculate mean and standard deviation for all features
- Plotting tens, hundreds or thousands of features
- Carrying out multiple binary comparisons
 - Fold change
 - Significance tests
 - Functional analysis

Choosing normalisation, scaling and transformation parameters

No normalisation, scaling or transformation applied

⊘ GROUP MedianNorm LogNorm NULL

GROUP NULL LogNorm AutoNorm

GROUP NULL NULL ParetoNorm

GROUP QuantileNorm NULL NULL

MediarNorm LogNorm ParetoNorm

GROUP MedianNorm LogNorm ParetoNorm

GROUP QuantileNorm LogNorm AutoNorm QuantieNom MULL ParetoNom

GROUP QuantileNorm NULL ParetoNorm

GROUP MedianNorm NULL AutoNorm

GROUP NULL LogNorm ParetoNorm QuantileNorm LogNorm NULL

GROUP QuantileNorm LogNorm NULL SunNorm LogNorm AutoNorm

GROUP SumNorm LogNorm AutoNorm

GROUP MedianNorm NULL NULL

⊘ GROUP NULL NULL AutoNorm

GROUP QuantileNorm LogNorm ParetoNorm SumNorm LogNorm NULL

GROUP SumNorm LogNorm NULL

GROUP MedianNorm NULL ParetoNorm

⊘ GROUP NULL NULL NULL

GROUP QuantileNorm NULL AutoNorm

GROUP SumNorm LogNorm ParetoNorm

Choosing normalisation, scaling and transformation parameters

Median normalisation Auto scaling

Calculating mean and standard deviation

	0-05-AG120_01	0-05-AG120_02	0-05-AG120_03	0-05-AG120_04
Label	0.05-AG120	0.05-AG120	0.05-AG120	0.05-AG120
Deoxyribose 5-phosphate	7.514123	6.867645	8.071323	7.606735
1-Pyrroline-5-carboxylic acid	0.7000576	0.7181286	0.7885691	0.774985
2,3-Diphosphoglyceric acid	0.198330198	0.998358909	4.797554878	0.390293828
2-C-Methylerythritol 4-phosphate	0.09817532	0.16302537	0.181704542	0.144328904
2-Hydroxybutyric acid	0.6969553	0.5474735	0.7168347	0.6053114
2-Hydroxyglutarate	1555.18097	1795.94293	1803.73076	1639.24844
2-Oxoglutaric acid	138.78692	107.24015	112.53924	112.72587
2-Phosphoglyceric acid	93.60893	130.14351	107.68161	86.56774
3,3 Dimethyl glutarate	0.9741405	1.8539091	1.1654159	0.9009203
3'-AMP	1.1105561	0.9363332	0.7699693	0.5402526
3-Hydroxyisovaleric acid	3.961918	4.477458	4.350256	3.583831
3-Hydroxymethylglutarate	19.37715	22.32152	22.33757	19.6882
3-methoxyphenylacetic acid	1.1096558	0.7212566	0.6529554	0.7073266
3-Methyl-2-oxovaleric acid	24.26573	30.35978	33.30401	30.1901

Compound	AG120_0.05
Deoxyribose_5_phosphatemean	7.5149565
Deoxyribose_5_phosphateSD	0.495640948
1_Pyrroline_5_carboxylic_acidmean	0.745435075
1_Pyrroline_5_carboxylic_acidSD	0.042967045
2,3_Diphosphoglyceric_acidmean	1.596134453
2,3_Diphosphoglyceric_acidSD	2.161352716
2_C_Methylerythritol_4_phosphatemean	0.146808534
2_C_Methylerythritol_4_phosphateSD	0.035833203
2_Hydroxybutyric_acidmean	0.641643725
2_Hydroxybutyric_acidSD	0.079374896
2_Hydroxyglutaratemean	1698.525775
2_HydroxyglutarateSD	121.9559026
2_Oxoglutaric_acidmean	117.823045
2_Oxoglutaric_acidSD	14.20541575
2_Phosphoglyceric_acidmean	104.5004475
2_Phosphoglyceric_acidSD	19.21712432
3,3_Dimethyl_glutaratemean	1.22359645
3,3_Dimethyl_glutarateSD	0.434751723
3'_AMPmean	0.8392778
3'_AMPSD	0.243057884
3_Hydroxyisovaleric_acidmean	4.09336575
3_Hydroxyisovaleric_acidSD	0.404319853
3_Hydroxymethylglutaratemean	20.93111
3_HydroxymethylglutarateSD	1.619772273
3_methoxyphenylacetic_acidmean	0.7977986
3_methoxyphenylacetic_acidSD	0.209982798
3_Methyl_2_oxovaleric_acidmean	29.529905
3 Methyl 2 oxovaleric acid SD	3.78945717

Efficient plotting of features and metabolites

Significance tests and fold change calculations

Metabolites	group1	group2	n1	n2	statistic	df	р	p.adj	p.adj.s	ignif
Deoxyribose 5-phosphate	AG120_0.05	AG120_5.0	4	4	13.18707	5.994776	1.18E-05	7.20E-04	***	
Deoxyribose 5-phosphate	AG120_0.05	AG120_10	4	4	15.20955	5.102625	1.91E-05	6.63E-04	***	
Deoxyribose 5-phosphate	AG120_0.5	AG120_5.0	4	4	9.108894	5.982581	1.00E-04	0.00305	**	
Deoxyribose 5-phosphate	AG120_0.5	AG120_10	4	4	10.58332	5.351244	8.64E-05	0.001654	**	
Deoxyribose 5-phosphate	AG120_0.05	AG120_5.0	4	4	13.18707	5.994776	1.18E-05	7.20E-04	***	
Deoxyribose 5-phosphate	AG120_0.5	AG120_5.0	4	4	9.108894	5.982581	1.00E-04	0.00305	**	
Deoxyribose 5-phosphate	AG120_0.05	AG120_10	4	4	15.20955	5.102625	1.91E-05	6.63E-04	***	
Deoxyribose 5-phosphate	AG120_0.5	AG120_10	4	4	10.58332	5.351244	8.64E-05	0.001654	**	
1_Pyrroline_5_carboxylic_acid	AG120_0.05	AG120_10	4	4	3.699042	5.439675	0.012	0.040667	*	
1_Pyrroline_5_carboxylic_acid	AG120_0.5	AG120_10	4	4	5.201052	4.598144	0.00441	0.019927	* (Com
1_Pyrroline_5_carboxylic_acid	AG120_0.05	AG120_10	4	4	3.699042	5.439675	0.012	0.040667	* [Deox
1 Pyrroline 5 carboxylic acid	AG120 0.5	AG120 10	4	4	5.201052	4.598144	0.00441	0.019927	* 1	L-Pyr

Compound	Ratio Co/AG120_0.05
Deoxyribose 5-phosphate	1.133
1-Pyrroline-5-carboxylic_acid	0.941
2,3-Diphosphoglyceric_acid	0.113
2-C-Methylerythritol_4-phosphate	1.928
2-Hydroxybutyric_acid	1.459
2-Hydroxyglutarate	6.093
2-Oxoglutaric_acid	0.821
2-Phosphoglyceric_acid	1.008
3,3_Dimethyl_glutarate	1.031
3'-AMP	1.137
3-Hydroxyisovaleric_acid	1.2
3-Hydroxymethylglutarate	1.11
3-methoxyphenylacetic_acid	1.172
3-Methyl-2-oxovaleric_acid	1.05

Functional (untargeted) analysis

Instead of manually preparing t-tests for all binary comparisons and uploading to metaboanalyst.ca, the code calculates and performs the analysis automatically

Ttest-for-FA – Notisblokk		
Fil Rediger Vis	Navn ^	
m.z p.value t.score rt 101.0244 5.02e-17 26.337471920578228 9.901	MUT-Co and MUT-AG120 Functional Analysis	
205.0353 7.21e-17 -16.954553717564607 14.717 147.0298 4.26e-16 27.279845337346355 9.901 85.0294 8.25e-16 25.530628330597256 9.901	MUT-Co and MUT-AG881 Functional Analysis	MUT-Co and MUT-GSK Functional Analysis V C
330.0959 1.61e-12 16.91/16/5/945/352 9.901 177.0401 8.64e-12 13.20611994391832 9.724 147.0554 9.77e-11 13.274241974736444 9.901	MUT-Co and MUT-BAY Functional Analysis	
159.0297 7.276-10 -9.282940543960747 11.435 159.0296 1.11e-9 8.30259882672574 9.724 147.0046 1.58e-9 11.166290786192262 9.901	MUT-Co and MUT-GSK Functional Analysis	mummichog matched compound all
504,0768 5.196-9 -0.6092539995446 13.863 258.0615 8.466-9 -8.648726282102313 9.901 111.0087 1.81e-8 -7.846877915347017 19.942 520.0764 1 92-8 -7.80048270452927 19.042	MUT-Co and WT-Co Functional Analysis	murmichog_pathway_enrichment
137.5325 2.78e-8 -7.7807698929869655 19.942 320.0622 2.93e-8 -7.7807698929869655 19.942 110.0247 5 56e-8 -7.789142864275854 19.942	📁 MUT-Co and WT-Co Functional Analysis no 2-HG	peaks_to_paths_0_dpi300
418.0296 5.73e-8 -7.716367112891709 19.942 216.051 5.97e-8 -7.5172025820269965 19.942 172.0614 6.31e-8 -7.427744045180019 19.942	📁 WT-Co and WT-AG120 Functional Analysis	Ttest-for-FA
240.0512 6.65e-8 -7.4626942799765 19.942 312.1222 8.4e-8 -7.122635420788377 9.844 196.0616 1.23e-7 -7.294521545472897 19.942	📁 WT-Co and WT-AG881 Functional Analysis	
522.0559 1.67e-7 -6.907203515588045 19.942 173.0087 3.58e-7 -6.742703683549795 19.942 401.0506 3.87e-7 -7.149451368833499 13.172	WT-Co and WT-BAY Functional Analysis	
303.0834 1.12e-6 -6.709873218042426 13.172 319.0968 1.22e-6 -6.667089148682282 9.901 505.0773 1.46e-6 -6.1170274950548285 13.172	📁 WT-Co and WT-GSK Functional Analysis	
284.0412 1.55e-6 -6.232215111543086 19.942 215.0432 1.78e-6 -6.196724482435006 19.942 131.0348 5.12e-6 -5.616469245347073 9.901		
153.0556 5.58e-6 -5.399744095534742 20.033 184.0016 6.26e-6 -5.560745928864869 13.68 130.0327 7.73e-6 -5.873742728796499 13.172		
200.0566 8.8e-6 -5.924806559518218 13.239 104.0353 1.77e-5 -5.211506329712666 13.68 273.997 3e-5 -4.887762279175809 13.637		

Functional (untargeted) analysis

pathway Arginine.and.Proline.Metabolism
pathway Ascorbate.(Vitamin.C).and.Aldarate.Metabolism
pathway Aspartate.and.asparagine.metabolism
pathway Beta-Alanine.metabolism
pathway Butanoate.metabolism
pathway D4&E4-neuroprostanes.formation
pathway Fatty.acid.oxidationperoxisome
pathway Glutamate.metabolism
pathway Lysine.metabolism
pathway Methionine.and.cysteine.metabolism
pathway Propanoate.metabolism
pathway Squalene.and.cholesterol.biosynthesis
pathway Urea.cycle.amino.group.metabolism
pathway Valineleucine.and.isoleucine.degradation
pathway Vitamin.B1.(thiamin).metabolism

pathway Lysine.metabolism – Notisblokk Rediger Vis

Query.Mass Matched.Compound Matched.Form Retention.Time Mass.Diff Empirical.Compound Query, Mass Matched, Compound Matched, Form Retention. Time Mass.Dif 145.014 C00026 M-H[-] 11.553 2.2353229984696e-4 EC00014 205.0352 C00026 M+CH3C00[-] 12.132 4.05000000000655e-4 EC00014 141.0193 C00322 M-H[-] 2.612 2.35332300164783e-5 EC000208 159.0296 C00322 M-H[-] 9.724 3.23533230016478-4 EC000211 159.0064 C00322 M-H[-] 14.979 2.93533230016915e-4 EC000212 175.02457 C00322 M-H[-] 15.113 2.93533230016915e-4 EC000212 175.02457 C00322 M-H[-] 15.526 2.57533230016915e-4 EC000212 205.0353 C00322 M-H[-] 11.435 2.23533230015311e-4 EC000212 159.0297 C00322 M-H[-] 11.688 3.353323001951e-4 EC000213 175.02456 C00322 M-H[-] 11.688 3.353323001951e-4 EC000213 175.02456 C00322 M-H[-] 11.688 3.3533230009871e-4 EC000213 200.0563 C00322 M-H[-] 10.641 1.68533230009871e-4 EC000213 200.0563 C00322 M-H[-] 12.132 3.5499999988104e-4 EC000213 205.0355 C00322 M+HCO[-] 12.942 7.64667699968413e-5 EC000259 172.0614 C00450 M+HCO0[-] 19.942 4.5499999988104e-4 EC000259 172.0614 C00450 M+HCO0[-] 19.942 4.5499999988104e-4 EC000259 172.0614 C00492 M+HCO0[-] 19.942 4.5499999988104e-5 EC000259 172.0614 C00492 M+HCO0[-] 19.942 4.5499999988104e-5 EC000259 172.0614 C00492 M+HCO0[-] 19.942 4.5499999988104e-5 EC000250 126.056 C00492 M+HCO[-] 17.833 2.35332300064783e-5 EC000260 126.056 C00492 M+HCO[-] 17.833 2.3533230006878a-5 EC000260 126.056 C00492 M+HCO[-] 17.833 2.3533230006892e-5 EC000430 126.056 C00408 M-H[-] 17.833 2.353323000892e-5 EC000430 126.056 C00408 M-H[-] 17.833 2.3533230008998e-4 EC000259 126.056 C00408 M-H[-] 17.833 2.353323000892e-5 EC000430 126.056 C00408 M-H[-] 19.977 1.2353323000978e-4 EC000242 128.0716 C00408 M-H[-] 19.977 1.2353323000978e-4 EC000242 145.014 C00026 M-H[-] 11.553 2.23533229984696e-4 EC00014 128.0716 C00408 M-H[-] 19.977 1.2353230009798e-4 EC000242 128.0716 C05936 M-H[-] 19.977 1.2353230009798e-4 EC00242 128.0716 C05936 M-H[-] 19.977 1.23533230006748ae-5 EC00029 133.0142 C00042 M-H[-] 10.197 3.35332300064783e-5 EC00029 152.99589 C00042 M+Hc][-] 9.537 3.9000000010104e-4 EC00029 152.99589 C00042 M+C1[-] 9.537 3.90000000010104e-4 EC00029 163.0244000000001 C00042 M+HCoC[-] 10.02 1.5500000006567e-4 EC00029 177.0401 C00042 M+CH3coO[-] 9.724 2.0499999994016e-4 EC00029 133.0142 C02170 M-H[-] 10.096 2.35332300064783e-5 EC00029 133.0142 C02170 M-H0[-] 10.137 3.35332300096525e-5 EC00029 163.0244000000001 C02170 M+HCoO[-] 10.02 1.55000000006567e-4 EC00029 163.0244000000001 c02170 M+HCoO[-] 10.02 1.5500000006567e-4 EC00029 177.0401 C02170 M+CH3coO[-] 9.724 2.04999999994016e-4 EC00029 175.9957 C00042 M+C1[-] 2.879 2.000000000639e-4 EC00029 158.04582 C00042 M+ACN-H[-] 3.132 4.85332300002028e-5 EC00030 99.0088 C00042 M-H2O-H[-] 2.661 7.64667699826305e-5 EC00030 158.04582 C02170 M+ACN-H[-] 3.132 4.85332300002028e-5 EC00030 99.0088 C02170 M+ACN-H[-] 3.132 4.85332300002028e-5 EC00030 99.0088 C02170 M+ACN-H[-] 3.132 4.85332300002028e-5 EC00030 99.0088 C02170 M+ACN-H[-] 3.132 4.85332300002028e-5 EC00030

Summary

Performing metabolomics analyses with R allows you to:

- Work efficiently
- Process larger amounts of data in less time
- Carry out several different binary comparisons with ease

Some potential introductory courses to R on LinkedIn Learning Learning R https://www.linkedin.com/learning/learning-r-2/r-for-datascience?u=76177458

R essential training: Wrangling and Visualizing data <u>https://www.linkedin.com/learning/r-essential-training-</u> <u>wrangling-and-visualizing-data/make-your-data-make-</u> <u>sense?u=76177458</u>

More in-depth on ggplot2 in R <u>https://www.linkedin.com/learning/data-visualization-in-r-</u> <u>with-ggplot2/welcome?u=76177458</u>

More in-depth of the R tidyverse <u>https://www.linkedin.com/learning/learning-the-r-</u> <u>tidyverse/welcome?u=76177458</u>

Workshop/Tutorial with R for metabolomics

Date TBC, likely February or March

Assumed basic knowledge of R – see tutorials on previous page

Help you get started and show you how to set up code that allows flexible analysis